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1 Basic formulas and operators

1.1 Factorials

Definition. Factorial. Factorial of a non-negative integer n, denoted by n!, is the product
of all positive integers less than or equal to n.

Definition. Falling Factorial. Falling factorial (sometimes called the descending facto-
rial) is defined as the polynomial:

n factors

@)p=2=z(z—-1)(z—-2)---(z—n+1)

=[[@-k+1)= I:I(x—k).
k=1 k=0



Definition. Rising Factorial. Rising factorial (sometimes called the descending factorial)
is defined as the polynomial:

n factors

™ =" =z +1)(z+2)---(z+n—1)

=[[@+k-1)= ﬂ(z+k).
k=1 k=0

1.2 Binomial Coefficient

Definition. Binomial Coefficient. Let n,k € N and n > k. The binomial coefficient is
the number of k-element subsets of an n-element set, and it is defined as:

n\ nfﬁ B n!
k) k' Kl(n—k)
Furthermore let x € R, and again £ € N. Then we define the binomial coefficient as:
2 ot
k) K

1.3 Binomial Coefficient Identities

Identities. Binomial Coefficient. The binomial coefficient carries within itself a lot of
identities, most of which can be easily observed in the Pascal’s Triangle:

(1) =(.")

2. Recursion for binomial coefficients.

alternatively re-indexed as ("/') = (,™,) + (,",)-

1. First identity.

3. Another recursion.

4. Another identity.

5. Bookkeeper sum.



6. Sum of coefficients.

2= () ()

8. Alternating Sums.

(1)-(5)

k even k odd

9. Strong sum.

Z (Z) kb = n(1 4 )"

k=0

1.4 Binomial Theorem

Theorem. Binomial Theorem. The expansion of any non-negative integer power n € Z*
of the binomial (z 4+ y) : z,y € R is a sum of the form:

(z+y)" = é (Z) Ry = i <Z> kot

k=0

Notable example for when y = 1:

T R N L B

1.5 Vandermonde Convolution Identity

Theorem. Vandermonde’s Convolution Identity. Let m,n,k € N. The identity states:

(m—i—n)_ " (m)( n )

r o Z k r—k
k=0

1.6 Binomial Coefficient Combinatorics

Information. Choosing k elements from n. Let n, k € N, k < n. Combinatorial formu-
las for choosing k elements from n:



Selection Method | Order | No Order

No Repetition nk (Z)

Repetition nk (”+£_ 1)

2 Combinatorical Principles

2.1 Inclusion-exclusion principle

Definition. Inclusion-exclusion principle. Inclusion-exclusion principle is a counting
technique which generalizes the familiar method of obtaining the number of elements in
the union of two finite sets. Symbolically expressed as:

|AUB| =|A|+ |B| - |AN B|
[AUBUC|=|A|+|B|+|C]—|AnB|—|ANC|—|BNC|+|AnBNC|

For n = 2,3. Or further in general n € N by the formula:

n

|AJUAU--UAL =) A= Y [AnAjl+ YD JANANA, [+ -+ (=1)" T A N Apn- -

i=1 1<i<i<n 1<i<i<k<n

2.2 Pigeonhole principle

Definition. Pigeonhole principle. Let S be a finite set. Let s1, s9, ..., s be the subsets,
which satisfy (Vi # 7)4,7 € [k]s; Ns; =0 and s1UsaUssU...Us, = S. Then:

151

(3 € [K]) Isil >

3 Asymptotic Notation
1. H, ~In(n)

pst1

2. Y p kB e Okt
3.1 BigO
Definition. Big O Asymptotic Notation. Let g : N — RT We define:
O(g(n)) ={f:N—=R": (3ceR") (3ng € N) (Vn > ng) f(n) <c-g(n)}

For when g : N — R one can write | f(n)| < |¢- g(n)|-
Even though O(g(n)) is clearly a set we often write f = O(g(n)), instead of f € O(g(n)).

Fact. Big O Limit. Let f,g € N — R*. As a fact:
f(n)

f(n)=0(g9) < limsup ——= < o©

n—oo g(n)

‘NAL|



3.2 Big Theta
Definition. Big Theta Asymptotic Notation. Let g : N — R*™ We define:
©(g(n)) ={f:N—=R": (3e1,c2 € R") (3ng € N) (Vn. > ng) e1 - g(n) < f(n) < cz2-g(n)}

Furthermore:

f(n) = (g(n) > {g<n> — O(f(n))

Fact. Big Theta Limit. Let f,g € N — RT. As a fact:

) =tg) = (imsup 1 <0} n (1imsup 220 > o)

3.3 Approximate Notation
Definition. ~ Notation. Let f,g € N — R*. We define:

f(n) =g(n) = JLII;O%ZCGR—i_

4 Integral Sum Approximation

Theorem. Sum Approximation. Let a,b € N, f : [a,b] — R non-decreasing, differen-
tiable. Then:

b b b
f(a) + / fyds < S F(k) < / @)+ £(b)
a k:a a

Analogically. Let a,b € N, f : [a,b] — R non-increasing, differentiable. Then:

b

b b
f@+ [ f@de> Y 1w > [ @+ s

k=a

4.1 Stirling formula

n n
n! ~V2mn - <7)
e

5 Stirling numbers of the second kind

We define {Z} as the number of ways to partition a set of n objects into k& non-empty
subsets.



5.1 Basic values
Lo =1{5}=0
2. i ={1r=1
3. "1 =)

e et

5.2 Properties
1. Explicit formula

2. Pascal identity:

3. Expansion

k=0

4. Boundary for triangle row inequality at k, ﬁ
n n n
<-- < > .2
{ 1 } {kn} {n}
5.3 Bell Numbers

Bell number B,, is the number of all partitions of an n-element set:
" (n
=3 {1]
k=0
Bell numbers satisfiy the following recurrence relation:

Bpy1 = ZZ:O (Z)Bk
By =1

5.4 Stirling Number Combinatorics

Information. Choosing k elements from n. Let n, k € N,k < n. Combinatorial formu-
las for choosing k non empty subsets from a set of size n:

1. TOP - Elements
2. SIDE - Subsets



Selection Method | Distinguishable | Non-distinguishable
Distinguishable {7} - k!(surj.) (v71)
Non-distinguishable {Z} (n-le } 1)

6 Permutations

6.1 Permutation

A permutation of a set A is a bijection from the set A to itself. A permutation ¢ can be
written as:

c:A— A
where o reorders the elements of A.

If |A| = n, without loss of generality we can assume: A = {1,2,...,n}.

6.2 Set of permutations
Sp={f:In] ———[n]} and |[S,|=n!

bijection

6.3 Cycle

A cycle in a permutation o is a subset of elements in S that are permuted among themselves,
with each element mapping to the next element in the subset, and the last element mapping
back to the first. A cycle of length k is written as:

o= (araz ...a)
indicating that o(a;) = a;41 for i =1,2,...,k — 1 and o(ag) = a3.

6.4 Two-Line Notation for Permutations

In two-line notation, a permutation ¢ is written as:

(1 2 ... n
77 \e() 0@ - oln)
where the top row lists the elements of the set S, and the bottom row lists their images

under o.
For example:

(1 2 3 45
977\2 31 5 4
6.5 One-Line Notation for Permutations

In one-line notation, a permutation o is written as a partition into disjoint cycles:

o= (123)(45)



6.6 Fixed point

Let o be a permutation of a set S. A fized point of o is an element = € S such that o(z) = z.
For example Id. (identity) has n fixed points.

6.7 Derangement

A derangement is a permutation of a set where no element appears in its original position.
More formally, for a set of n elements, a derangement is a permutation o such that o(i) # i
for all 7 in the set.

RN
=y
k=0

6.8 Transposition

A transposition is a cycle of length 2, i.e., it swaps two elements and leaves the others
unchanged. It is written as:
o= (ab)

indicating that o(a) = b and o(b) = a, with o(z) = z for all = # a,b.

6.9 Inversion
Let o € S,,. An inversion is a pair (o(¢),0(j)), which satisfies:
i <jando(i) > o(j)

One may think these two are "not in order".

6.10 Sign of a permutation (sgn)

The sign (or parity) of a permutation o, denoted sgn(o), is defined as number of inversions
in a permutation. It satisfies the following property:

sgu(o) = (-1

Where N(o) is number of transpositions in the decomposition of o.

A permutation is called even if sgn(c) = +1 and odd if sgn(o) = —1.

For example:

Consider the permutation o = (132). This can be decomposed into transpositions as:

o= (13)(32)

Since there are 2 transpositions, sgn(c) = (—1)? = 1. Therefore, o is an even permutation.



6.11 Order of a permutation (ord)

The order of a permutation o, denoted ord(c), is the smallest positive integer k such that
o is the identity permutation. Formally,

ord(c) = min{k € N | ¢* =id}
For ¢ built of disjoint cycles of length c1,ca, ..., cg, its order satisfies:
ord(o) = lem(cy, ca, ..., c)

For example:
Consider the permutation ¢ = (123). Applying ¢ three times returns to the identity per-
mutation:

o=(123) ¢>=(132) o¢*=id
Thus, ord(o) = 3.

7 Stirling numbers of the first kind

The Stirling numbers [2] is the number of permutations in S,,, which have exactly k-disjoint
cycles.
n n—1 n—1
= —1)- )
=l [

0
[O}:l and B]zo for n>0.

with the initial conditions:

and some interesting features:

e ot 2]

the following is also true:

7.1 Properties

1. Factorial correlation

2. Stirling relation

3. Relation for z%:



4. Harmonic relation

5. Weird Pascal recurrence

6. Another sum

8 Fibonacci Numbers
8.1 Definition
The Fibonacci sequence (Fy,) is defined as follows:
Fy=0, F=1 (1)

F,=F, 1+F, 5 for n>2 (2)

8.2 Closed Form (Binet’s Formula)

The n-th Fibonacci number can be expressed in closed form using Binet’s formula:

SDn_wn
V5

where @ = 1+2\/g (the golden ratio) and ¢ = %

F, =

8.3 Matrix Representation

Fibonacci numbers can also be represented using matrices:
0= F, Fp| |1 1
T |Fy Fyl |10

n __ Fn+1 Fn
Q |:Fn Fn—1:|

Then:

9 C(Catalan Numbers

The n-th Catalan number C), is the number of ways to triangulate a convex polygon with
n + 2 sides. C,, can be defined using the binomial coefficients:

C":nil(zs):(?)_<n2fl> )

11




It can also be defined recursively as:
Co=1 (5)

Cpi1 = ZCkCn p for n>0 (6)
k=0

9.1 Asymptotic growth

1 2n 1 4™ (Stirli )
Cp = . N —— irling approx.
n+1 n nmw & 8PP

3

9.2 Alternate definitions

1. The number of ways to correctly parenthesize a product of n + 1 factors is the n-th
Catalan number.

2. The number of distinct binary trees with n+ 1 leaves (or n internal nodes) is the n-th
Catalan number.

3. The number of mountain up-right, down-right paths of length 2n (paths from (0,0)
to (2n,0) that do not dip below the z-axis) is given by the n-th Catalan number.

10 Generating Functions

A generating function for a sequence {a,}32 is a formal power series of the form:

oo
= E apz"

n=0

The coeflicients a,, represent terms of the sequence.

10.1 Geometric series

The geometric series for a, = ag - ¢" is defined as:

oo
2:: l—qx

10.2 Exponential Generating Functions

The Taylor series for e* is defined as:

00
=y 5
_Tl



10.3 Generating function for the Fibonacci sequence

Let {F,} denote the Fibonacci sequence defined by Fo =0, F; = 1, and F,, = F,_1 + F,,_»
for n > 2. The generating function for the Fibonacci sequence is:

ZFQ: l—xx—mz

10.4 Generating function for binomial coefficient

The generating function for the binomial coefficient (:) is:

(1+z)" = Zn: <Z)xk

k=0

10.5 Generating function for n

Use derivation to find the generating function for the coefficient n is.

Zm: 1—:102

n=0

2 (") = e

n>0

10.6 Generating function 1/(x+1)

The generating function ﬁ is the sum:

10.7 Identities
1. A(z) 4+ B(x) is the generating function for ¢, = a, + b,
2. cA(z) is the generating function for ¢, = ¢ a,
3. A(z)B(x) is the generating function for ¢, = >} arbn—k (convolution)
4. A'(zx) is the generating function for ¢, = (n + 1)an41

5. @ is the generating function for ¢, = a1

13



11 Counting functions

11.1 Number of functions

1. Number of functions |f : [k] — [n]| = n*

2. Number of 1-1 functions |f;_1 : [k] — [n]| = nk
3. Number of surjective functions |fsurj. : [k] = [n]| = 31y (1) (n —9)(=1)" = k! - {7}

4. Number of growing functions |fgrow. : [k] — [n]| = (Z)

11.2 Solutionsto z; + a9+ +xp=n

For when x; > 1. We can write 2’ = x; — 1, then 2’ € {0,1,2,..}. But now:

it ah 4+t =n—k

()0

unique solutions to this equation.

There are:

11.3 Expansion coefficient

Coefficient for a*1b*2 ... in the expansion of (a +b+c+...)"

n _ n!
ki koy . km/)  kilkal.. k)

12 Helpful integrals

1. In(x)
/ln(w)dac =zln(z) —z+C

14
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