
Lazy Search Trees
Introduction

Rafa l W lodarczyk
INA 4

October 23, 2025

1 / 18

Overview

1. Introduction

2. Problem Domain

3. Sorted Dictionary Interface

4. Gaps

5. Intervals

6. LST - Lazy Search Tree

7. LST - Insertion

8. LST - Query

9. LST - Update on Query

10. LST - Count function

11. References

2 / 18

A Brief History of Tree Data Structures

These tree data structures had the biggest impact on the field:

• Binary Search Tree (1960s) O(log n) average-case query, O(n) worst-case query.

• AVL Tree (1962) Self-balancing, O(log n) worst-case for insert and query.

• Red-Black Tree (1972) Self-balancing, O(log n) worst-case for insert and query,
often with fewer rotations than AVL.

• Splay Tree (1985) Self-adjusting, performance optimized for sequences of
operations. Frequently queried keys are closer to the root node.

• Treap (1989) Randomized, combines properties of binary search trees and heaps.

Building on research into Deferred Tree Structures, the Lazy Search Tree (2020)
introduces postponed updates and efficiency for specific query patterns.

3 / 18

Problem Domain

Assume the comparison model and consider a dynamic multiset S of (current) size
|S | = n. Our goal is to efficiently support two types of operations:

• order-based operations: rank, select, membership, predecessor, successor, minimum,
and maximum.

• dynamic operations: insert, delete, change-key, split, and merge.

Example: if we only want to support minimum and maximum element we are left with a
priority queue. We therefore aim for a generalization of priority queues, which provide all
of the order-based operations from above.

Performance-wise, we want to get as close to a dictionary implemented with a hash table,
while supporting the order-based operations - ultimately achieving what is known as a
sorted dictionary.

4 / 18

Sorted Dictionary Interface

The paper proposes the following interface to define a sorted dictionary:

• Construction(S) Construct a sorted dictionary on the set S .

• Insert(e) Add (k, v) to S , where k is a comparable key.

• RankBasedQuery(r) A general rank-based query on S . Example. r -th smallest
element.

• Delete(ptr) Delete the element pointed to by ptr from S .

• ChangeKey(ptr, k’) Change the key of the element pointed to by ptr to k ′.

• Split(r) Split S at rank r , returning two sorted dictionaries T1 and T2 of r and n− r
elements, respectively, which satisfy (∀x ∈ T1) (∀y ∈ T2) (x ≤ y).

• Merge(T1, T2) Merge sorted dictionaries T1 and T2 and return the result, which
satisfies (∀x ∈ T1) (y ∈ T2) (x ≤ y).

5 / 18

Gaps

We maintain a set of m gaps {∆i}, 1 ≤ i ≤ m, where each gap ∆i contains a bag of
elements. The gaps satisfy the total order property - (∀x ∈ ∆i) (y ∈ ∆i+1) (x ≤ y).

Example 1. Take an example multiset S = {(1, a), (1, a), (3, c), (4, d)}, composed of pairs
(ki , vi), we can represent it as a set of gaps, which satisfy the total order on ki .

∆1 = {(1, a)} ∆2 = {(1, a)} ∆3 = {(3, c)} ∆4 = {(4, d)}

Example 2. We could also define it as:

∆1 = {(1, a), (1, a)} ∆2 = {(3, c), (4, d)}

6 / 18

Gap insertion and deletion

Example 3. Let’s insert a new element (k, v) = (3, b) to gaps from Example 1. We must
maintain the total order property, therefore we find a gap, such that:

(∀ki ∈ ∆i) (∀ki+1 ∈ ∆i+1) ki ≤ k < ki+1

Which in this case is ∆2 or ∆3. We insert the element into the gap, resulting in:

∆1 = {(1, a)} ∆2 = {(1, a)} ∆3 = {(3, c), (3, b)} ∆4 = {(4, d)}

Alternatively:

∆1 = {(1, a)} ∆2 = {(1, a), (3, b)} ∆3 = {(3, c)} ∆4 = {(4, d)}

The paper specifies both are valid, and the choice is left to the implementation.

Deletion happens similarly, we find the gap containing the element to be deleted, and
remove it from the bag - if the bag is empty, we remove the gap itself.

7 / 18

Intervals

Within each gap ∆i , elements are further partitioned into intervals. Each interval is
defined by a pair of keys (kl , kr). The interval only contains a key k if kl ≤ k ≤ kr .
Example. For the gap ∆t :

∆t = {(1, a), (1, b), (2, c), (3, d)}

We can present the following interval representation:

I = {(1, 2), (3, 3)}

The paper proves there are at most 4 log(|∆i |) intervals in each ∆i gap.

8 / 18

Lazy Search Tree

The data structure has two levels:

• The Gaps {∆i} at the top level. Within each gap {∆i}, there are:

• The Intervals Ii ,1, Ii ,2, . . . , Ii ,ℓi , where ℓi is # of intervals in gap ∆i .

Figure: Visualization of a Lazy Search Tree.

We can store the gaps using a globally biased (2,B)-Tree and the intervals as a sorted
array.

9 / 18

LST - Construction

Let us insert the sequence: 5, 12, 3, 8, 15, 6.

• Initial {}.
• Add 5 ∆1 = {5}
• Add 12 ∆1 = {5, 12}
• Add 3 ∆1 = {3},∆2 = {5, 12}
• Add 8 ∆1 = {3},∆2 = {5, 8, 12}
• Add 15 ∆1 = {3},∆2 = {5, 8, 12, 15}
• Add 6 ∆1 = {3},∆2 = {5, 6, 8, 12, 15}

Construction inevitably runs in O(n) time.

10 / 18

LST - Insertion

We either create a new gap ∆1 or find the smallest i , such that (∀k ∈ ∆i) (key ≥ k)

void insert(const T &key) {

if (empty()) {

gap r_gap = gap(key);

gap_ds.insert(r_gap);

} else {

gap& r_gap = gap_ds.lower_bound_or_last(gap(key));

r_gap.insert(key);

}

++lst_size;

}

Lower bound or last gap - ∆i can be found with binary search in O
(
log n

∆i

)
. There are

at most O (log∆i) intervals in ∆i . Binary search to find an interval then runs in

O (log log∆i) time. Therefore the whole insert runs in O
(
log n

∆i
+ log log∆i

)
.

11 / 18

LST - Insertion Example with Intervals

Assume LST: ∆1 = {3},∆2 = {5, 6, 8, 12, 15}, with intervals
I1,1 = [3, 3], I2,1 = [5, 6, 8], I2,2 = [12, 15] and we want to insert key = 9.

1. Find the relevant gap. The lower bound or last function selects ∆2 as the first
target gap, since 9 > 3.

2. Find the interval within gap. Within ∆2, 9 falls between the elements of I2,1 and
I2,2.

3. Place 9 in ∆2 in its sorted position. Update gaps or intervals depending on the
situation - must maintain the total order property and not degenerate the structure.

We end up with LST: ∆1 = {3},∆2 = {5, 6, 8, 9, 12, 15}, with intervals
I1,1 = [3, 3], I2,1 = [5, 6, 8], I2,2 = [9, 9], I2,3 = [12, 15]).

12 / 18

How intervals are found in code

int getIntervalIdx(const T &key) {

int lo = last_left_idx, hi, mult;

bool init = key <= intervals[last_left_idx]->get_max();

mult = (init) ? -1 : 1;

exponential_search(lo, hi, mult, init, key, intervals);

return binary_search(lo, hi, init, key, intervals);

}

Paper states it is optimized to provide O(1) average case insert, O(log log∆i) worst case.

13 / 18

LST - Query

When performing a query, we first identify the gap ∆i that contains the rank element r .
Formally, we find i such that:

i−1∑
j=1

|∆j | < r ≤
i∑

j=1

|∆j |.

We then answer the query using the elements within ∆i .
During this process, we can restructure the gaps by splitting ∆i into two new gaps, ∆′

i

and ∆′
i+1, keeping the total order property. The split is performed so that the rank

element r is the largest in ∆′
i or the smallest in ∆′

i+1. Specifically, after the split, either

|∆′
i |+

i−1∑
j=1

|∆j | = r or |∆′
i |+

i−1∑
j=1

|∆j | = r − 1.

This ensures that the structure remains consistent and supports efficient future queries.
14 / 18

LST - Update on Query

After each query we can perform an update.

Figure: Visualization of an interval update.

15 / 18

LST - Count function

bool membership(const T &key) {

return intervals[getIntervalIdx(key)]->membership(key);

}

int count(const T &key) {

if (empty()) return false;

gap &r_gap = gap_ds.lower_bound_or_last(gap(key));

bool result = r_gap.membership(key);

pair<gap, gap> new_gaps = r_gap.restructure(key, 2);

gap_ds.erase(r_gap);

if (!new_gaps.first.empty()) gap_ds.insert(new_gaps.first);

if (!new_gaps.second.empty()) gap_ds.insert(new_gaps.second);

return result;

}
16 / 18

LST - Chained Queries

The Lazy Search Tree adapts its efficiency based on query distribution.

• General Case. Over a sequence of n insertions and q distinct queries, the total
complexity is O(B +min(n log log n, n log q)). B = Σm

i=1|∆i | log2(n/|∆i |) is defined
in the abstract. A time bound of O(n log q + q log n) holds.

• Few Queries. If q is small (e.g., q = O(1)), lazy search trees can achieve near-linear
time for the sequence.

• Clustered Queries. For q/k queries each requesting k consecutive keys, with
uniform insertions in between, the total cost is
O(n log(q/k) + min(n log log n, n log q)) for insertions and O(log n) for successive
queries within a batch after the first query.

• Priority Queue. If all queries are for the minimum element, the Lazy Search Tree
functions as a priority queue. Insertions take O(log log n) time, and each query takes
O(log n) time.

17 / 18

References

1. Sandlund, Bryce, and Sebastian Wild. ”Lazy search trees.” 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 2020.
https://arxiv.org/abs/2010.08840

2. Sandlund, Bryce. ”Lazy Search Trees (GitHub repository).”
https://github.com/brycesandlund/lazy-search-trees

Further read:

1. Rysgaard, Casper Moldrup, and Sebastian Wild. ”Lazy B-Trees.” arXiv preprint
arXiv:2507.00277 (2025). https://arxiv.org/abs/2507.00277

18 / 18

https://arxiv.org/abs/2010.08840
https://github.com/brycesandlund/lazy-search-trees
https://arxiv.org/abs/2507.00277

	Introduction
	Problem Domain
	Sorted Dictionary Interface
	Gaps
	Intervals
	LST - Lazy Search Tree
	LST - Insertion
	LST - Query
	LST - Update on Query
	LST - Count function
	References

