
Alogrytmy Optymalizacji Dyskretnej
Lista 3 - Najkrótsze Ścieżki w Grafach

Rafał Włodarczyk 279762

2025-11-05

1 Model SSSP
Problem SSSP (Single Source Shortest Path) w grafie skierowanym G = (V,E) polega na
znalezieniu najtkrótszych ścieżek ze źródła s ∈ S do wszystkich innych wierzchołków V \{s}
z wagami krawędzi w : E → R≥0. Najkrótszą ścieżkę p = (v0, v1, . . . , vk), z wierzchołka v0 do
vk definiujemy jako taką ścieżkę, dla której sumaryczna waga:

w(p) =
k−1∑
i=0

w(vi, vi+1)

jest najmniejsza. Definiujemy odległość d(u, v) jako wagę najkrótszej ścieżki z u do v:

d(u, v) =

{
min{w(p) : u→ v} jeśli istnieje ścieżka z u do v

∞ w przeciwnym wypadku

Dla uproszczenia zapisu V w rozważaniach złożności oznacza |V |, a E oznacza |E|.

2 Algorytm Dijkstry
Chcemy wyznaczyć długości najkrótszych ścieżek z każdego źródła s ∈ S do wszystkich
wierzchołków V \ {s}. Rozpoczynamy od jednego ze źródeł s ∈ S, następnie przechodzimy
po wszystkich połączeniach wychodzących z s, aktualizujac odległości do sąsiadów v jako
d(s, v) = w(s, v). O kolejności wyboru następnego wierzchołka do odwiedzenia decyduje
minimalna odległość od źródła spośród jeszcze nieodwiedzonych wierzchołków - możemy ją
efektywnie przechowywać za pomocą struktury implementujacej funkcję extract-min - np.
kopiec binarny. Po wybraniu wierzchołka u do odwiedzenia, przechodzimy po wszystkich
jego sąsiadach v i sprawdzamy, czy odległość do nich może zostać zmniejszona, gdybyśmy
przeszli przez u. Proces powtarzamy aż do przejścia wszystkich wierzchołków osiągalnych z
s. Dla grafu spójnego będą to wszystkie wierzchołki i wszystkie krawędzie.

1



2.1 Implementacja Algorytmu Dijkstry

Z dokumentacji std::priority_queue1 wynika, że operacje insert oraz extract-min mają
złożność O(log n), gdzie n to liczba elementów w kolejce, a inicjalizacja kolejki to O(1).

Algorithm 1 Algorytm Dijkstry dla problemu SSSP
for all v ∈ V do
d[v]←∞, π[v]← none ▷ O(V )
end for
d[s]← 0, Q← priority queue with (d[s], s)
while Q ̸= ∅ do ▷ O(V + E)

(d[u], u)← Q.extract-min() ▷ O(log V )
for all (u, v) ∈ E do

if d[v] > d[u] + w(u, v) then
d[v]← d[u] + w(u, v)
π[v]← u
Q.insert(d[v], v) ▷ O(log V )

end if
end for

end while
return d, π ▷ Lista odległości i poprzedników

Cytując families.pdf2 z załącznika do laboratorium only sparse graphs are of interest,
as for other graphs arc scans dominate the running time. Oznacza to, że badane grafy będą
rzadkie, zatem wybieram listę sąsiedztwa jako wewnętrzną reprezentację grafu.

2.2 Złożność Obliczeniowa Algorytmu Dijkstry

Na podstawie analizy implementacji algorytmu możemy stwierdzić, że jego złożoność wynosi.

O((E + V ) log V )

3 Alogrytm Diala
Algorytm Diala to modyfikacja algorytmu Dijkstry, w której wykorzystujemy fakt, że wagi
krawędzi są ograniczone do przedziału [0, C], wobec czego możemy usprawnić wybór następ-
nego wierzchołka z etykietami tymczasowymi. W i-tym kroku algorytmu długości ścieżek
znajdą się w przedziale [0, iC]. Możemy zatem wykorzystać cykliczną listę kubełków, gdzie j-
ty kubełek przechowuje wierzchołki z etykietami tymczasowymi j, j+(C+1), j+2(C+1), . . . .
Skoro za każdym razem opróżniamy kubełek, to etykiety nie będą na siebie nachodzić.

1https://en.cppreference.com/w/cpp/container/priority_queue.html
2http://www.dis.uniroma1.it/challenge9

2

https://en.cppreference.com/w/cpp/container/priority_queue.html
http://www.dis.uniroma1.it/challenge9


3.1 Implementacja Algorytmu Diala

Algorithm 2 Algorytm Diala dla problemu SSSP
buckets← cyclic list(C + 1)
buckets[0]← {s}
distances[s]← 0
current← 0
while true do

while buckets[current] is empty do
current← (current + 1) mod (C + 1) ▷ Szukamy niepustego kubełka

end while
while buckets[current] is not empty do ▷ Opróżniamy bieżący kubełek

u← buckets[current]
remove u from buckets[current]
for all (v,w) ∈ graph[u] do ▷ Patrzmy na sąsiadów u

newDist← distances[u] + w
if newDist < distances[v] then ▷ Krótsza ścieżka znaleziona

remove v from buckets[distances[v] mod C + 1]
distances[v]← newDist
add v to buckets[newDist mod C + 1]

end if
end for

end while
end while

3.2 Złożność Obliczeniowa Algorytmu Diala

Zobaczmy, że tak samo jak w algorytmie Dijkstry, rozpatrujemy każdą krawędź dokładnie raz,
a każdy wierzchołek zostanie przejrzany maksymalnie V C razy. Zatem złożoność algorytmu
Diala wynosi:

O(E + V C)

Widzimy, że algorytm jest pseudowielomianowy, dla dużych C będzie znacznie mniej wydajny
niż algorytm Dijkstry.

4 Algorytm Radix Heap
Algorytm Radix Heap to modyfikacja algorytmu Dijkstry, w której ponownie zakładamy
wagi z przedziału [0, C], wykorzystujemy za to inny sposób przetrzymywania etykiet tym-
czasowych. Delegujemy przechowywanie etykiet do struktury Radix Heap, która pozwala na
wykonywanie operacji insert oraz extract-min. Szerokości kolejnych kubełków są kolej-
nymi potęgami 2, zatem potrzeba jedynie O(log V C) kubełków, aby pokryć cały przedział

3



wag krawędzi. Uproszczenie podobne do algorytmu Diala pozwala zredukować liczbę ku-
bełków do O(logC). Rozdzielamy zawartość opróżnianego kubełka do wszystkich kubełków
mniejszych szerokości. W przypadku Diala robiliśmy tak tylko do poprzedniego kubełka, tu-
taj musimy rozdzielić do wszystkich mniejszych, ponieważ szerokości kubełków nie są równe.

4.1 Złożność Obliczeniowa Algorytmu Radix Heap

Ponieważ struktura Radix Heap posiada złożoność operacji insert w czasie O(1) oraz
extract-min w czasie O(log(V C)), to złożoność całego algorytmu Radix Heap wynosi:

O(E + V log(V C))

Wykładowe uproszczenie pozwala zredukować złożoność do:

O(E + V logC)

Zauważmy natomiast, że dla małych wartości C możemy zbliżać się do złożoności liniowej od
wielkości grafu. Jeśli działamy na 64-bitowych liczbach nieujemnych, to log(C) ≤ 64, zatem
możemy uprościć złożoność do:

O(E + V )

5 Wykresy dla eksperymentów SSSP
Eksperymenty zostaną przeprowadzone dla następujących rodzin grafów:

• Long 4C, Long 4N

• Random 4C, Random 4N

• Square C, Square N

• USA-Road-d (distances)

Dla każdej rodziny liczymy SSSP od wierzchołka z najmniejszym indeksem, oraz średnią
dla pięciu losowo wybranych wierzchołków startowych. Na wykresach kolorem czerwonym
oraz pokrewnymi oznaczam algorytm Dijkstry, niebieskim algorytm Diala, a zielonym algo-
rytm Radix Heap.

4



5.1 Long C

Rysunek 1: longc_plot.png Rysunek 2: longc_plot_zoomed.png

5.2 Long N

Rysunek 3: longn_plot.png Rysunek 4: longn_plot_zoomed.png

5.3 Random 4C

Rysunek 5: random4c_plot.png Rysunek 6: random4c_plot_zoomed.png

5



5.4 Random 4N

Rysunek 7: random4n_plot.png Rysunek 8: random4n_plot_zoomed.png

5.5 Square C

Rysunek 9: squarec_plot.png Rysunek 10: squarec_plot_zoomed.png

5.6 Square N

Rysunek 11: squaren_plot.png Rysunek 12: squaren_plot_zoomed.png

6



5.7 USA

Rysunek 13: usa_bar_chart.png

5.8 Obserwacje SSSP

Algorytm Dijkstry prezentuje stabilne wyniki dla wszystkich rodzin grafów, zbliżone do teo-
retycznej złożoności O((V + E) log V ). Widzimy, że dla rodzin grafów LongC, Random4C
oraz SquareC zwiększająca się maksymalna waga krawędzi C nie wpływa na czas działania
algorytmu Dijkstry, co jest zgodne z teoretyczną analizą złożoności. Widzimy również, jak w
rodzinach LongN, Random4N oraz SquareN, czas działania algorytmu Dijkstry rośnie wraz
z liczbą wierzchołków N , co również jest zgodne z teoretyczną analizą złożoności.

Zauważmy, że algorytm Diala, ze względu na czynnik C bardzo źle radzi sobie dla rodzin
grafów LongC, Random4C oraz SquareC, gdzie maksymalna waga krawędzi jest bardzo duża,
z tego również powodu wykonywanie dalszych obliczeń i > 10 dla zadanych rodzin grafów jest
niepraktycznie i bezcelowe. Osiągnięta asymptotyka wyraźnie pokazuje oczekiwane zjawisko,
a teoretyczny model zostaje potwierdzony. Ciekawe jest natomiast to, iż dla małych wielkości
C, algorytm Diala radzi sobie porównywalnie, lub nawet nieznacznie lepiej niż pozostałe
algorytmy. Najbardziej wymagającą rodziną dla algorytmu Diala okazuje się rodzina LongC,
gdzie czas działania staje się ogromny już dla C = 7.

Usprawnienie wnoszone przez algorytm Radix Heap jest widoczne w prawie wszystkich
rodzinach grafów, gdzie algorytm radzi sobie lepiej niż dwa pozostałe. Dla rodziny Random4N
widzimy niewiele gorsze zachowanie niż algorytm Dijkstry.

7



6 Tabela wyników dla eksperymentów P2P
Eksperyment P2P polega na zmierzeniu odległości i czasu między wierzchołkiem o najmniej-
szym indeksie, a wierzchołkiem o największym indeksie, ponadto mierzymy średni czas dla
czterech innych losowo wybranych par wierzchołków.

Jako przedstawicieli wybieramy największe grafy z każdej rodziny, które udało się prze-
tworzyć w rozsądnym czasie. W przypadku algorytmu Diala pomijam przypadki, gdzie C
jest zbyt duże i algorytm nie radzi sobie z przetworzeniem grafu. Usprawnienie V C + 1 do
C + 1 liczby kubełków eliminuje błędy OOM (Out Of Memory) w przypadku dużych i, ale
wciąż pozostaje problem absurdalnego czasu działania.

Rodzina - Algorytm Start Koniec Odległość Czas (ms)
Long-C - dijkstra 1 1048576 1308259008765 21.6291
Long-C - dial brak (timeout)
Long-C - radix_heap 1 1048576 1308259008765 21.7272
Long-n - dijkstra 1 2097152 31336751771 277.804
Long-n - dial 1 2097152 31336751771 3456.40
Long-n - radix_heap 1 2097152 31336751771 253.764
Random4-C - dijkstra 1 1048576 3471241820 126.504
Random4-C - dial 1 1048576 3471241820 683.072
Random4-C - radix_heap 1 1048576 3471241820 96.2762
Random4-n - radix_heap 1 2097152 9051281 314.371
Random4-n - dial 1 2097152 9051281 1400.29
Random4-n - dijkstra 1 2097152 9051281 513.474
Square-C - dijkstra 1 1048576 122219500320 117.732
Square-C - dial brak (timeout)
Square-C - radix_heap 1 1048576 122219500320 82.4341
Square-n - dijkstra 1 2096704 714640488 258.535
Square-n - dial 1 2096704 714640488 1043.21
Square-n - radix_heap 1 2096704 714640488 192.932
USA-road-d - dijkstra 1 23947347 23228284 3215.28
USA-road-d - dial 1 23947347 23228284 4722.40
USA-road-d - radix_heap 1 23947347 23228284 2351.68

Tabela 1: Wyniki eksperymentów P2P dla różnych rodzin grafów i algorytmów

Zobaczmy następnie średnie czasy przeszukiwania losowych par wierzchołków:

8



Rodzina - Algorytm Czas (ms)
Long-C - dijkstra 117.798
Long-C - dial brak (timeout)
Long-C - radix_heap 84.2331
Long-n - dijkstra 101.535
Long-n - dial 2432.8
Long-n - radix_heap 139.14
Random4-C - dijkstra 248.834
Random4-C - dial 645.152
Random4-C - radix_heap 213.556
Random4-n - dijkstra 300.834
Random4-n - dial 1402.4
Random4-n - radix_heap 355.472
Square-C - dijkstra 192.187
Square-C - dial brak (timeout)
Square-C - radix_heap 86.0959
Square-n - dijkstra 435.333
Square-n - dial 1134.6
Square-n - radix_heap 330.171
USA-road-d - dijkstra 60.7381
USA-road-d - dial 4427.67
USA-road-d - radix_heap 43.624

Tabela 2: Uśrednione czasy wykonania dla różnych rodzin grafów i algorytmów

6.1 Obserwacje P2P

Zobaczmy, że algorytm Diala ponownie źle radzi sobie z dużymi wartościami C, co jest zgodne
z wcześniejszymi obserwacjami. Dla rodziny LongN notujemy absurdalny czas działania.
Alogrytm Radix Heap oraz algorytm Dijkstry radzą sobie porównywalnie, ciężko ocenić który
z nich jest lepszy, ponieważ w niektórych przypadkach Radix Heap jest szybszy, a w innych
Dijkstra. Warto zauważyć, że dla rodziny USA-road-d Radix Heap radzi sobie zauważalnie
lepiej, a algorytm Diala nie działa aż tak źle.

7 Wnioski
Wykresy potwierdzają teoretyczne złożoności algorytmów Dijkstry, Diala oraz Radix Heap.
Wybór standardowego algorytmu Dijkstry jest wskazany, gdy nie mamy ograniczeń na mak-
symalną wagę krawędzi C, lub gdy C jest duże. W przypadku małych wartości C, algorytm
Diala może być konkurencyjny, jednakże jego złożoność pseudowielomianowa czyni go mniej
uniwersalnym. Algorytm Radix Heap wydaje się być najlepszym wyborem w przypadku gdy
posiadamy solidną implementację, oraz gdy ograniczamy C do rozmiaru 64-bitowej liczby
całkowitej. Wtedy jego złożoność zbliża się do liniowej względem rozmiaru grafu, co jest
bardzo korzystne.

9


	Model SSSP
	Algorytm Dijkstry
	Implementacja Algorytmu Dijkstry
	Złożność Obliczeniowa Algorytmu Dijkstry

	Alogrytm Diala
	Implementacja Algorytmu Diala
	Złożność Obliczeniowa Algorytmu Diala

	Algorytm Radix Heap
	Złożność Obliczeniowa Algorytmu Radix Heap

	Wykresy dla eksperymentów SSSP
	Long C
	Long N
	Random 4C
	Random 4N
	Square C
	Square N
	USA
	Obserwacje SSSP

	Tabela wyników dla eksperymentów P2P
	Obserwacje P2P

	Wnioski

