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1 Model SSSP

Problem SSSP (Single Source Shortest Path) w grafie skierowanym G = (V, E') polega na
znalezieniu najtkrotszych $ciezek ze zrodta s € S do wszystkich innych wierzchotkow V'\ {s}
z wagami krawedzi w : E — Rsg. Najkrotsza Sciezke p = (vo, vq, . . ., vk), z wierzchotka vy do
v, definiujemy jako taka Sciezke, dla ktorej sumaryczna waga:

w(p) = w(% Ui—l—l)
i=0

jest najmniejsza. Definiujemy odlegltosé d(u,v) jako wage najkrotszej sciezki z u do v:

d(u,v) min{w(p) : v — v} jesli istnieje $ciezka z u do v
u,v) = .
o0 w przeciwnym wypadku

Dla uproszczenia zapisu V' w rozwazaniach ztoznosci oznacza |V, a E oznacza |E)|.

2 Algorytm Dijkstry

Chcemy wyznaczyé¢ dlugosci najkrotszych $ciezek z kazdego zréodia s € S do wszystkich
wierzchotkow V' \ {s}. Rozpoczynamy od jednego ze zrodet s € S, nastepnie przechodzimy
po wszystkich potaczeniach wychodzacych z s, aktualizujac odlegltosci do sasiadow v jako
d(s,v) = w(s,v). O kolejnosci wyboru nastepnego wierzchotka do odwiedzenia decyduje
minimalna odleglo$é¢ od Zrodta sposréd jeszcze nieodwiedzonych wierzchotkéw - mozemy ja
efektywnie przechowywaé za pomoca struktury implementujacej funkcje extract-min - np.
kopiec binarny. Po wybraniu wierzchotka u do odwiedzenia, przechodzimy po wszystkich
jego sasiadach v i sprawdzamy, czy odlegtos¢ do nich moze zosta¢ zmniejszona, gdyby$my
przeszli przez u. Proces powtarzamy az do przejScia wszystkich wierzchotkéw osiagalnych z
s. Dla grafu spojnego beda to wszystkie wierzchotki i wszystkie krawedzie.



2.1 Implementacja Algorytmu Dijkstry

Z dokumentacji std: :priority_queueE] wynika, ze operacje insert oraz extract-min maja
ztoznosé O(logn), gdzie n to liczba elementéow w kolejce, a inicjalizacja kolejki to O(1).

Algorithm 1 Algorytm Dijkstry dla problemu SSSP
for all v € V do

d[v] < oo, w[v] < none > O(V)

end for

d[s] - 0, @ < priority queue with (d[s], s)

while @) # () do >0V + E)
(dlu],u) < Q.extract-min() > O(log V)

for all (u,v) € E do
if d[v] > d[u] + w(u, v) then
d[v] < du] + w(u,v)
m[v] + u
Q.insert(d[v], v) > O(log V)
end if
end for
end while
return d, 7 > Lista odleglosci i poprzednikow

Cytujac families .pdfﬂ z zalgcznika do laboratorium only sparse graphs are of interest,
as for other graphs arc scans dominate the running time. Oznacza to, ze badane grafy beda
rzadkie, zatem wybieram liste sasiedztwa jako wewnetrzna reprezentacje grafu.

2.2 Zlozno$é Obliczeniowa Algorytmu Dijkstry

Na podstawie analizy implementacji algorytmu mozemy stwierdzi¢, ze jego zlozono$¢ wynosi.

O((E+V)logV)

3 Alogrytm Diala

Algorytm Diala to modyfikacja algorytmu Dijkstry, w ktérej wykorzystujemy fakt, ze wagi
krawedzi sa ograniczone do przedziatu [0, C], wobec czego mozemy usprawni¢ wybor nastep-
nego wierzchotka z etykietami tymczasowymi. W ¢-tym kroku algorytmu dlugosci Sciezek
znajda si¢ w przedziale [0, iC]. Mozemy zatem wykorzystaé cykliczna liste¢ kubetkow, gdzie j-
ty kubelek przechowuje wierzcholki z etykietami tymczasowymi j, j+(C+1), j+2(C+1),. ...
Skoro za kazdym razem oprézniamy kubetek, to etykiety nie beda na siebie nachodzi¢.

'https://en.cppreference.com/w/cpp/container/priority_queue.html
Zhttp://wuw.dis.uniromal.it/challenge9


https://en.cppreference.com/w/cpp/container/priority_queue.html
http://www.dis.uniroma1.it/challenge9

3.1 Implementacja Algorytmu Diala

Algorithm 2 Algorytm Diala dla problemu SSSP

buckets < cyclic list(C' + 1)
buckets[0] < {s}
distances[s] < 0
current < 0
while true do
while buckets|current| is empty do

current < (current + 1) mod (C' + 1) > Szukamy niepustego kubetka
end while
while buckets|current| is not empty do > Oproézniamy biezacy kubelek

u <+ buckets|current]
remove u from buckets|current|

for all (v, w) € graph[u] do > Patrzmy na sasiadow u
newDist <+ distances[u] + w
if newDist < distances|v| then > Krotsza Sciezka znaleziona

remove v from buckets[distances[v] mod C' + 1]
distances[v] <— newDist
add v to buckets[newDist mod C' + 1]
end if
end for
end while
end while

3.2 Zlozno$é¢ Obliczeniowa Algorytmu Diala

Zobaczmy, ze tak samo jak w algorytmie Dijkstry, rozpatrujemy kazda krawedz doktadnie raz,
a kazdy wierzchotek zostanie przejrzany maksymalnie V' C' razy. Zatem ztozonos¢ algorytmu
Diala wynosi:

O(E+ V()

Widzimy, ze algorytm jest pseudowielomianowy, dla duzych C bedzie znacznie mniej wydajny
niz algorytm Dijkstry.

4 Algorytm Radix Heap

Algorytm Radix Heap to modyfikacja algorytmu Dijkstry, w ktorej ponownie zakladamy
wagi z przedziatu [0, C|, wykorzystujemy za to inny sposob przetrzymywania etykiet tym-
czasowych. Delegujemy przechowywanie etykiet do struktury Radix Heap, ktora pozwala na
wykonywanie operacji insert oraz extract-min. Szerokosci kolejnych kubetkow sa kolej-
nymi potegami 2, zatem potrzeba jedynie O(log V(') kubetkéw, aby pokry¢ caly przedzial



wag krawedzi. Uproszczenie podobne do algorytmu Diala pozwala zredukowaé liczbe ku-
betkow do O(log C'). Rozdzielamy zawarto$¢ oproznianego kubetka do wszystkich kubetkow
mniejszych szerokosci. W przypadku Diala robilismy tak tylko do poprzedniego kubetka, tu-
taj musimy rozdzieli¢ do wszystkich mniejszych, poniewaz szerokosci kubetkéw nie sa rowne.

4.1 Zloznos¢é Obliczeniowa Algorytmu Radix Heap

Poniewaz struktura Radix Heap posiada zlozonos¢ operacji insert w czasie O(1) oraz
extract-min w czasie O(log(V'C)), to ztozonos¢ calego algorytmu Radix Heap wynosi:

O(E + Vieg(V())
Wyktadowe uproszczenie pozwala zredukowaé ztozonosé do:
O(E + Vleg(C)

Zauwazmy natomiast, ze dla matych wartosci C' mozemy zblizaé¢ sie do ztozonosci liniowej od
wielkosci grafu. Jesli dzialamy na 64-bitowych liczbach nieujemnych, to log(C) < 64, zatem
mozemy uprosci¢ ztozonosé do:

O(E +V)

5 Wykresy dla eksperymentéw SSSP

Eksperymenty zostang przeprowadzone dla nastepujacych rodzin grafow:
e Long 4C, Long 4N
e Random 4C, Random 4N
e Square C, Square N
e USA-Road-d (distances)

Dla kazdej rodziny liczymy SSSP od wierzchotka z najmniejszym indeksem, oraz srednig
dla pieciu losowo wybranych wierzchotkéw startowych. Na wykresach kolorem czerwonym
oraz pokrewnymi oznaczam algorytm Dijkstry, niebieskim algorytm Diala, a zielonym algo-
rytm Radix Heap.



5.1 Long C
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Rysunek 1: longc plot.png

5.2 Long N
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Rysunek 3: longn plot.png

5.3 Random 4C
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Rysunek 5: random4c_plot.png
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Rysunek 2: longc plot zoomed.png
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Rysunek 4: longn plot zoomed.png
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5.4 Random 4N
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Rysunek 7: random4n_plot.png

5.5 Square C
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Rysunek 9: squarec_ plot.png

5.6 Square N
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Rysunek 11: squaren plot.png
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Rysunek 10: squarec_ plot zoomed.png
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5.7 USA

Czas wykonania algorytmow dla regiondw USA
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Rysunek 13: usa_bar chart.png

5.8 Obserwacje SSSP

Algorytm Dijkstry prezentuje stabilne wyniki dla wszystkich rodzin graféw, zblizone do teo-
retycznej ztozonosci O((V + E)log V). Widzimy, ze dla rodzin graféow LongC, Random4C
oraz SquareC zwickszajaca sie maksymalna waga krawedzi C' nie wptywa na czas dziatania
algorytmu Dijkstry, co jest zgodne z teoretyczng analiza ztozonosci. Widzimy réwniez, jak w
rodzinach LongN, Random4N oraz SquareN, czas dzialania algorytmu Dijkstry rosnie wraz
z liczba wierzchotkéw N, co réwniez jest zgodne z teoretyczng analizg ztozonosci.

Zauwazmy, ze algorytm Diala, ze wzgledu na czynnik C' bardzo Zle radzi sobie dla rodzin
grafow LongC, Random4C oraz SquareC, gdzie maksymalna waga krawedzi jest bardzo duza,
z tego rowniez powodu wykonywanie dalszych obliczeri ¢ > 10 dla zadanych rodzin grafow jest
niepraktycznie i bezcelowe. Osiggnieta asymptotyka wyraznie pokazuje oczekiwane zjawisko,
a teoretyczny model zostaje potwierdzony. Ciekawe jest natomiast to, iz dla matych wielkosci
C, algorytm Diala radzi sobie poréwnywalnie, lub nawet nieznacznie lepiej niz pozostate
algorytmy. Najbardziej wymagajaca rodzina dla algorytmu Diala okazuje sie rodzina LongC,
gdzie czas dzialania staje sie ogromny juz dla C' = 7.

Usprawnienie wnoszone przez algorytm Radix Heap jest widoczne w prawie wszystkich
rodzinach grafow, gdzie algorytm radzi sobie lepiej niz dwa pozostale. Dla rodziny Random4N
widzimy niewiele gorsze zachowanie niz algorytm Dijkstry.



6 Tabela wynikéw dla eksperymentow P2P

Eksperyment P2P polega na zmierzeniu odlegtosci i czasu miedzy wierzchotkiem o najmniej-
szym indeksie, a wierzchotkiem o najwickszym indeksie, ponadto mierzymy Sredni czas dla
czterech innych losowo wybranych par wierzchotkow.

Jako przedstawicieli wybieramy najwieksze grafy z kazdej rodziny, ktore udato sie prze-
tworzy¢ w rozsadnym czasie. W przypadku algorytmu Diala pomijam przypadki, gdzie C
jest zbyt duze i algorytm nie radzi sobie z przetworzeniem grafu. Usprawnienie VC' + 1 do
C + 1 liczby kubetkow eliminuje btedy OOM (Out Of Memory) w przypadku duzych i, ale
wcigz pozostaje problem absurdalnego czasu dzialania.

Rodzina - Algorytm Start Koniec Odlegtos¢  Czas (ms)
Long-C - dijkstra 1 1048576 1308259008765 21.6291
Long-C - dial brak (timeout)

Long-C - radix__heap 1 1048576 1308259008765 21.7272
Long-n - dijkstra 1 2097152 31336751771 277.804
Long-n - dial 1 2097152 31336751771 3456.40
Long-n - radix_heap 1 2097152 31336751771 253.764
Random4-C - dijkstra 1 1048576 3471241820 126.504
Random4-C - dial 1 1048576 3471241820 683.072
Random4-C - radix_heap 1 1048576 3471241820 96.2762
Random4-n - radix heap 1 2097152 9051281 314.371
Random4-n - dial 1 2097152 9051281 1400.29
Random4-n - dijkstra 1 2097152 9051281 513.474
Square-C - dijkstra 1 1048576 122219500320 117.732
Square-C - dial brak (timeout)

Square-C - radix_heap 1 1048576 122219500320 82.4341
Square-n - dijkstra 1 2096704 714640488 258.535
Square-n - dial 1 2096704 714640488 1043.21
Square-n - radix__heap 1 2096704 714640488 192.932
USA-road-d - dijkstra 1 23947347 23228284 3215.28
USA-road-d - dial 1 23947347 23228284 4722.40
USA-road-d - radix _heap 1 23947347 23228284 2351.68

Tabela 1: Wyniki eksperymentow P2P dla réznych rodzin graféw i algorytmow

Zobaczmy nastepnie Srednie czasy przeszukiwania losowych par wierzchotkow:



Rodzina - Algorytm Czas (ms)

Long-C - dijkstra 117.798
Long-C - dial brak (timeout)
Long-C - radix__heap 84.2331
Long-n - dijkstra 101.535
Long-n - dial 2432.8
Long-n - radix_heap 139.14
Random4-C - dijkstra 248.834
Random4-C - dial 645.152
Random4-C - radix_heap 213.556
Random4-n - dijkstra 300.834
Random4-n - dial 1402.4
Random4-n - radix_heap 355.472
Square-C - dijkstra 192.187
Square-C - dial brak (timeout)
Square-C - radix_heap 86.0959
Square-n - dijkstra 435.333
Square-n - dial 1134.6
Square-n - radix_heap 330.171
USA-road-d - dijkstra 60.7381
USA-road-d - dial 4427.67
USA-road-d - radix_heap 43.624

Tabela 2: Usrednione czasy wykonania dla réznych rodzin graféow i algorytmow

6.1 Obserwacje P2P

Zobaczmy, ze algorytm Diala ponownie Zle radzi sobie z duzymi wartosciami C', co jest zgodne
7z wczeSniejszymi obserwacjami. Dla rodziny LongN notujemy absurdalny czas dziatania.
Alogrytm Radix Heap oraz algorytm Dijkstry radza sobie poréwnywalnie, ciezko ocenié¢ ktory
z nich jest lepszy, poniewaz w niektorych przypadkach Radix Heap jest szybszy, a w innych
Dijkstra. Warto zauwazy¢, ze dla rodziny USA-road-d Radix Heap radzi sobie zauwazalnie
lepiej, a algorytm Diala nie dziata az tak Zle.

7  Whnioski

Wykresy potwierdzaja teoretyczne ztozonosci algorytmow Dijkstry, Diala oraz Radix Heap.
Wybor standardowego algorytmu Dijkstry jest wskazany, gdy nie mamy ograniczeri na mak-
symalng wage krawedzi C', lub gdy C' jest duze. W przypadku matych wartosci C, algorytm
Diala moze by¢ konkurencyjny, jednakze jego ztozonos$é¢ pseudowielomianowa czyni go mniej
uniwersalnym. Algorytm Radix Heap wydaje sie by¢ najlepszym wyborem w przypadku gdy
posiadamy solidna implementacje, oraz gdy ograniczamy C' do rozmiaru 64-bitowej liczby
catkowitej. Wtedy jego ztozonosé zbliza sie do liniowej wzgledem rozmiaru grafu, co jest
bardzo korzystne.
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